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Abstract. Flood forecasting and simulation in semiarid regions are always poor, and a single criterion assessment provides 

limited information for decision making. Here, we propose a multicriterion assessment framework combining the absolute 

relative error, the flow partitioning and the confidence interval estimated by the Hydrologic Uncertainty Processor (HUP) to 

assess the most striking feature of an event-based flood––the peak flow. The physically based model MIKE SHE and three 10 

conceptual models (two models with a single runoff generation mechanism, the Xianjiang model (XAJ) and the Shanbei model 

(SBM), and one model with the mixed runoff generation mechanism, the vertically mixed runoff model (VMM)) are compared 

in terms of flood modeling performance in four semiarid catchments (Qiushui River, Qingjian River, Tuwei River and Kuye 

River) in the middle Yellow River. Our results show that VMM has a better flood estimation performance than the other models, 

and under the multicriterion assessment framework, the average acceptance of flood events accounts for 58%, but when 15 

absolute relative error 20% is used as the performance criterion, its figure is only 41% in four semiarid catchments. 

1 Introduction 

Arid and semiarid regions account for approximately one-third of the global land surface and half of China. A trend towards a 

warmer climate has increased global incidences of intense precipitation events. Arid and semiarid regions, i.e., areas where 

the annual rain is less than 250 and 250–500 mm/a, respectively, are particularly vulnerable to this change in climate (Khomsi 20 

et al., 2016; Yatheendradas et al., 2008). More than 50% of flood-related casualties occur in these regions worldwide (Brito 

and Evers, 2016). 

The hydrological model plays an important role in flood simulation and forecasting (Devia et al., 2015). Many studies 

focus on the improvement and estimation of hydrologic models in humid catchments, and similar work for semiarid catchments 

is relatively few (Jiang et al., 2015). The runoff generation mechanism of semiarid catchments is complex and may be 25 

dominated by infiltration excess and saturation excess mechanisms simultaneously (Beven, 1983; Beven and Freer, 2001). 
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Modeling semiarid catchments is a difficult task due to the strong spatial variability in rainfall and complexity of 

landscape characteristics (vegetation, soil, etc.) (Pilgrim et al., 1988). Compared with humid catchments, the rainfall of 

semiarid catchments is characterized by high intensity and short duration (Andersen, 2008). In certain areas with developing 

economies and small populations, the network of rain gauges is generally sparse. Rainfall data are important inputs for 

hydrologic models, and the high temporal-spatial rainfall variability combined with sparse rain gauges makes modeling runoff 5 

more difficult (Hao et al., 2018; Li and Huang, 2017; Mwakalila et al., 2001). 

Satellite technology has the possibility to solve the issue of low rain gauge densities, but the low spatial and temporal 

resolutions of the products limit their applicability to subdaily rainstorms (Dinku et al., 2007). Weather radar has high spatial 

resolution (1 km) and temporal resolution (15 min). However, the radar costs are too high to be used on a large scale in semiarid 

areas (Young et al., 1999). 10 

Literature on the subdaily modeling of rainfall-runoff is limited in semiarid catchments. Due to quick times-to-peak and 

scarce rainfall data, capturing rainstorm flood responses is more difficult than estimating daily, monthly or annual runoff 

(Andersen, 2008; McMichael et al., 2006). Flood simulation results in semiarid catchments are often poor. Michaud and 

Sorooshian (1994) used 24 severe rainstorms to compare three hydrologic models (the lumped SCS model, simple distributed 

SCS model, and distributed KINEROS model) in the Walnut Gulch catchment, and none of them were able to accurately 15 

simulate flood events. McIntyre and Al-Qurashi (2009) analyzed 27 flood events with three hydrologic models (the lumped 

IHACRES model, distributed IHACRES model, and a 2-parameter regression model) in a catchment in Oman. The average 

absolute relative errors in the flow peak and flow volume were 53% and 36%, respectively, for the best performing models. 

Under current technical conditions, it seems difficult to achieve an acceptable simulation/forecasting result for flood events in 

semiarid catchments. Therefore, it is urgent to search for useful information based on the limited accuracy of modeling results 20 

to serve as flood warnings and to improve decision making. 

In this study, a multicriterion assessment framework combining the absolute relative error, partitioning flow zones and 

the confidence interval estimated by Hydrologic Uncertainty Processor (HUP) is proposed to provide information for engineers’ 

decision making. Four hydrologic models (the vertically mixed runoff model (VMM), MIKE SHE, Xinanjiang model (XAJ) 

and Shanbei model (SBM)) are compared on the basis of the performance of modeling results in four catchments in the middle 25 

Yellow River. The global sensitive analysis (GSA) method PAWN is used to analyze the parametric sensitivity of VMM. The 

remainder of the paper is organized as follows. The section below presents a description of the study area and the data set used. 

The VMM model, model calibration, initial conditions of the VMM model, parametric analysis, multicriterion assessment 

framework, comparison of models and model validation are introduced in the methodology section. The results of the model 

comparison, sensitivity analysis and analysis of the multicriterion assessment framework for VMM are described in the results 30 

and discussion section, with the final section presenting the conclusions of the study. 
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2 Study area and data 

The 4 selected study catchments are all key tributaries located in the middle Yellow River, China (Fig. 1). The maximum and 

minimum areas of catchments are 1989 km2 and 8706 km2, respectively. The average annual temperature is 6–14°C. The 

average annual precipitation is 1010–1150 mm, of which 65–80% is concentrated in summer. The rainfall is generally 

characterized by high intensity and short duration. The average annual evaporation is 1010–1150 mm. All selected catchments 5 

are semiarid due to an aridity index between 2.31 and 2.78 (UNEP, 1992). More information about the catchments is listed in 

Table 1. 

The study catchments have poor vegetation coverage and serious soil erosion. Some hydrologists have studied daily and 

monthly rainfall runoff, and few attempts have been applied to model hourly flood flows (Cheng et al., 2009; Wang et al., 

2006). With the rapid increase in population and economic development, flood disasters have received increasing attention. 10 

Hence, modeling floods and providing a useful method for decision makers in charge of flood defense are essential and urgent. 

Streamflow and rainfall data are from 1983 to 2009. Hourly streamflow data came from hydrological stations. Nine 

rainfall gauge stations in the Qiushui River catchment, 15 rainfall gauge stations in the Qingjian River catchment, 12 rainfall 

gauge stations in the Tuwei River and 41 rainfall gauge stations in the Kuye River were selected. Thiessen polygon methods 

were used to interpolate the rainfall data. 15 

3 Methodology 

3.1 Vertically mixed runoff model 

The VMM is a conceptual hydrologic model developed by Bao and Wang (1997), and has been used in many areas in China, 

especially in semiarid and subhumid catchments (Bao and Zhao, 2014; Li, 2018; Li et al., 2018a; Wen and Cai, 2015). 

Compared with other conceptual models, such as the XAJ model (Zhao, 1992), Sacramento Soil Moisture Accounting Model 20 

(SSMA) (Burnash et al. 1973), etc., VMM is able to simulate the saturation excess and infiltration excess runoff generation 

mechanisms simultaneously. As shown in Fig. 2, VMM combines the infiltration capacity curve and tension water content 

storage capacity curve in the vertical direction. Net rainfall (observed rainfall after removal of evaporation, PE) is partitioned 

into surface runoff (RS) and infiltration flow (FA) by the infiltration capacity curve in VMM. FA is regulated by the tension 

water storage capacity curve, part of which supplements the tension water storage (W), and the rest of which forms the below-25 

ground runoff (RB) (including subsurface runoff and ground runoff). Here, the calculation of runoff generation is described 

briefly. For more detailed information about VMM, you can refer to Bao and Zhao (2014). 

The improved Green-Ampt infiltration curve (Bao, 1993) is applied in VMM as the infiltration capacity curve, and the 

equation is as follows: 

𝐹𝑀 = 𝐹𝐶 (1 + 𝐾
𝑊𝑀 − 𝑊

𝑊𝑀
) (1) 30 
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where FM is the average point infiltration capacity of the catchment, and the descriptions of WM, K, and FC are shown in 

Table 2. 

FA is calculated by Eq. (2). 

 

𝐹𝐴 = {
𝐹𝑀 − 𝐹𝑀 (1 −

𝑃𝐸

(𝐹𝑀𝑀)1+𝐵𝐹)                   𝑃𝐸 < 𝐹𝑀𝑀

𝐹𝑀                                                             𝑃𝐸 ≥ 𝐹𝑀𝑀
(2)5 

where
 

𝐹𝑀𝑀 = 𝐹𝑀(1 + 𝐵𝐹) (3) 

in which FMM is the maximum point infiltration capacity of the catchment and BF is shown in Table 2. 

The part that exceeds the average point infiltration capacity of the catchment FM forms RS. RS can be calculated by Eq. 

(4). 10 

𝑅𝑆 = 𝑃𝐸 − 𝐹𝐴 (4) 

RB can be calculated by Eq. (5). 

𝑅𝐵 = {
𝐹𝐴 − 𝑊𝑀 + 𝑊 + 𝑊𝑀 (1 −

𝑊∗ + 𝐹𝐴

𝑊𝑀𝑀

𝐵+1

)        𝐹𝐴 + 𝑊∗ < 𝑊𝑀𝑀

𝐹𝑀−𝑊𝑀 + 𝑊                                                        𝐹𝐴 + 𝑊∗ ≥ 𝑊𝑀𝑀

(5) 

where 

𝑊∗ = 𝑊𝑀𝑀 [1 − (1 −
𝑊

𝑊𝑀
)]

(
1

𝐵
+1)

(6) 15 

𝑊𝑀𝑀 = 𝑊𝑀(1 + 𝐵) (7) 

in which WMM is the maximum point tension water storage capacity of the catchment, W* is the ordinate of Fig. 2 (b), 

which represents the point tension water content capacity in the catchment, and B is shown in Table 2. 

The outlet runoff R can be calculated as follows. 

𝑅 = 𝑅𝑆 + 𝑅𝐵 (8) 20 

3.2 Initial condition of event-based VMM 

The initial condition has important effects in modeling flood events. Therefore, initial tension water storage (W0) and initial 

free water storage (S0) should be determined at the beginning of each flood event calculation. We use daily rainfall data over 

the period of 1983–2009 to simulate the daily streamflow with daily based VMM in each catchment’s outlet. The simulation 

results are accepted when achieving water balance compared with observed streamflow. Hence, tension water storage W and 25 

free water storage S per day during 1983–2009 can be achieved, and the initial conditions (W0 and S0) of each flood event are 

determined based on daily values of W and S. 

3.3 Model calibration 

To consider the spatial variation in rainfall, the subcatchments are divided, and the lumped model VMM is applied to each 
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subcatchment. Because only one streamflow gauge station is present in each catchment, the spatial variation in model 

parameters cannot be recognized by calibration. Thus, the parameters are set uniformly in all the subcatchments. The fourteen 

parameters (Table 2) of VMM are calibrated by the global optimization algorithm SCE-UA (Duan et al., 1993). The ranges of 

parameters are determined based on previous literature and prior knowledge (Bao and Zhao, 2014; Li et al., 2018). 

In semiarid catchments, due to the rapid rise and fall of floods (usually less than 24 hours), accurate simulation of the full 5 

hydrograph is not needed and cannot be realized. Nash-Sutcliffe efficiency (NSE; (Nash and Sutcliffe, 1970) is widely used 

as an objective function of calibration in humid catchments; however, it may not be suitable for semiarid catchments because 

there is no need for full fitness of simulated and observed streamflows. (McIntyre and Al-Qurashi, 2009; SHARMA and 

MURTHY, 1998) used absolute relative error to evaluate model outputs (flow peak and flow volume) for semiarid areas, and 

the calibrated results indicated that the flow peak results are more accurate than suggested based on NSE. Thus, the simulated 10 

hydrograph is reasonable for the majority of flood events. The equations are as follows: 

𝐸𝑝 =
1

𝑛
∑

|𝑄𝑝
𝑖 − 𝑄

𝑝′
𝑖 |

𝑄
𝑝′
𝑖

𝑛

𝑖=1

(9) 

𝐸𝑣 =
1

𝑛
∑

|𝑄𝑣
𝑖 − 𝑄

𝑣′
𝑖 |

𝑄
𝑣′
𝑖

𝑛

𝑖=1

(10) 

where 𝐸𝑝 and 𝐸𝑣 are average performances (in terms of absolute relative error) for peak flows and flow volumes in each 

catchment, respectively; n is the number of events; the index i denotes each event; 𝑄𝑝  and 𝑄
𝑝′  are the simulated and 15 

measured values of peak flow per event, respectively; and 𝑄𝑣   and 𝑄
𝑣′   are the simulated and measured values of flow 

volume per event, respectively. 

Simultaneously, constraining the model output with peak flows and flow volumes can be expressed as: 

𝐸𝑝𝑣 =
𝐸𝑝 + 𝐸𝑣

2
(11) 

where 𝐸𝑝𝑣 is the objective value. The closer 𝐸𝑝𝑣 is to 0, the better the model outputs are. We set the number of iterations to 20 

2000 in the model calibration step. 

3.4 Model comparison 

To achieve a better performance in event-based rainstorm flood simulations, three hydrologic models, including two conceptual 

models, XAJ and SBM, and one distributed model, MIKE SHE, are used for comparison with the VMM model. XAJ was 

developed by (Zhao, 1992) and has a single saturation excess runoff generation mechanism. XAJ has been successfully applied 25 

in humid and subhumid catchments (Lü et al., 2013; Wei-jian et al., 2016). We test the performance of XAJ in the semiarid 

catchments of the middle Yellow River. SBM was developed by Zhao (1983) and has a single infiltration excess runoff 

generation mechanism. SBM is generally used in semiarid or arid catchments (Bao et al., 2017). MIKE SHE is one of the most 
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widely used physically based distributed hydrologic models (Li et al., 2018b; Refsgaard, 1995; Rujner et al., 2018; Samaras 

et al., 2016). 

3.5 A multicriterion assessment framework of flood events 

Due to strong spatially variability of rainfall, complexity of landscape characterizes and lack of enough rain gauges, event-

based floods simulation and forecasting in semiarid catchments are very difficult. Although some hydrologists improve flood 5 

simulation and forecasting by improving hydrologic models, the improvements are always limited or only are suitable to some 

specific regions (Collier, 2007). Flood peak is the most significant flood feature in semiarid regions. Determining the extent 

to which the calculation of flood peaks can be accepted is crucial. Generally, the absolute relative error is used to measure the 

calculation of flood peak accuracy, for example, 20%, 30% or other of that is acceptable (Li et al., 2014; McIntyre and Al-

Qurashi, 2009). To provide more information for the decision maker of flood defense, generalized likelihood uncertainty 10 

estimation (GLUE) and Bayesian method are used to provided probabilistic forecasting like 95% confidence interval 

(Christiaens and Feyen, 2002; Li et al., 2017), but the way may not lead to clear decision (Beven, 2007).  

In this study, to acquire a utility method for decision maker, we propose a mulit-criterion assessment framework for flood 

forecasting in the catchments of middle Yellow Rivers. This framework can be described as follows: 

(C1) the absolute relative error of peak flow should be less than 20%. 15 

(C2) modeling and observation of peak flows should be in the same flow zone: the observed peak flows 𝑄𝑝 of all flood 

events in a catchment are divided into three zones (low flow zone, medium flow zone, high flow zone), with 25th percentiles 

𝑄𝑝25 and 75th percentiles 𝑄𝑝75 as the boundary points respectively: if each 𝑄𝑝≤𝑄𝑝25, then the peak flow 𝑄𝑝 belongs to 

the low flow zone; if 𝑄𝑝 ≥ 𝑄𝑝75, then the peak flow 𝑄𝑝 belongs to the high flow zone; the rest flow peaks belongs to medium 

flow zone. Both of the 25th percentile and 75th percentile is commonly used to distinguish zones. 20 

(C3) the modeling peak flows should fall within one standard deviation (σ) of mean (about 68.3% confidence interval) of 

peak flows estimated by hydrologic uncertainty processor (HUP), one component of Bayesian approach (detailed can be found 

in (Krzysztofowicz, 1999; Biondi et al., 2010)).  

The key of framework is C2, and C1 is used to avoid errors caused by flow zone boundaries. For example, when Qp75 =

200 m3/s, modelling peak flow equals 198 m3/s and observed peak flow equals 201 m3/s, only using the condition C2 may 25 

lead the modeling result not to be accepted. So, adding C1 can deal with the problem. C3 is used to test the confidence level 

of modeling peak flows. A modeling peak flow that can be accepted should satisfy condition C1 or condition C2 and then 

condition C3. 

3.6 Parameter sensitivity analysis 

To assess the effects of inputs on model output, sensitivity analysis (SA) was proposed (Saltelli et al., 1989). SA can be 30 
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classified into GSA and local sensitivity analysis (LSA). Compared with LSA, GSA is able to analyze the effects of inputs 

within the entire input domain. The Fourier amplitude sensitivity test (Cukier et al., 1973), Sobol’ method (Sobol, 1993) and 

Morris screening method (Morris, 1991) are the most widely used GSA methods in the assessment of parameter sensitivity in 

hydrologic models. (Pianosi and Wagener, 2015) proposed the novel GSA method PAWN based on cumulative density function. 

PAWN has advantages over the parameter ranking and time-consuming nature of other GSA methods (Khorashadi Zadeh et 5 

al., 2017). In this study, we use the PAWN method to perform GSA on the VMM model. 

Considering 𝑥𝑖,𝑗 (𝑖, 𝑗 = 1, 2, ⋯, where i and j represent the i-th input parameters and the j-th sampling, respectively) as 

sensitivity inputs, then the sensitivity of 𝑥𝑖,𝑗  can be measured by the distance between 𝐹
(𝑦𝑖 |𝑥𝑖,𝑗)

(𝑦𝑖)  (the cumulative 

probability distribution function of 𝑦𝑖   when 𝑥𝑖,𝑗  changes between the upper bound and lower bound) and 𝐹𝑦𝑖
(𝑦𝑖)  (the 

cumulative probability distribution function of 𝑦𝑖   when 𝑥𝑖 =
1

𝑛
∑ 𝑥𝑖,𝑗

𝑛
𝑗=1  , where n is the number of samplings per input 10 

parameter). The Kolmogorov–Smirnov statistic (Simard and Ecuyer, 2011) is used to measure the distance between 

𝐹(𝑦𝑖 |𝑥𝑖)(𝑦𝑖) and 𝐹𝑦𝑖
(𝑦𝑖): 

𝐾𝑆(𝑥𝑖,𝑗) = max
1≤𝑗≤𝑛

|𝐹𝑦𝑖
(𝑦𝑖) − 𝐹

(𝑦𝑖 |𝑥𝑖,𝑗)
(𝑦𝑖)| (12) 

As KS varies with 𝑥𝑖,𝑗, the maximum of all possible KS is seen as the PAWN index 𝑃𝑖: 

𝑃𝑖 = max
1≤𝑗≤𝑛

𝐾𝑆(𝑥𝑖,𝑗) (13) 15 

𝑃𝑖  ranges from 0 to 1. The closer 𝑃𝑖  is to 1, the more sensitive 𝑥𝑖 is. A 𝑃𝑖  equal to 1 indicates that 𝑥𝑖 has no effect on 

the model. For more information about PAWN, please refer to Pianosi and Wagener (2015). In this study, as Pianosi and 

Wagener (2018) suggested, the number of evaluations is set to 500. 

3.7 Model validation 

The modeling time step was hourly, and the modeling period was between 1983 and 2009. In the Qiushui River, 20 flood 20 

events were selected, and the first 15 events were used for calibration, and the remaining 5 events were used for validation. 

Similarly, in the Qingjian River, 29 flood events were selected, of which 24 events were used for calibration, and the remaining 

5 events were used for validation. In the Tuwei River, 23 flood events were selected, of which 18 events were used for 

calibration, and the remaining 5 events were used for validation. Finally, in the Kuye River, 28 flood events were selected, of 

which 23 events were used for calibration, and the remaining 5 events were used for validation. 25 

4 Results and discussion 

4.1 Comparison of model results 

For flow peaks, the absolute relative error of the peak flow for each model in the four catchments is shown in Fig. 3. Except 
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for the validation period in the Kuye River catchment, it is obvious that VMM performs better than the other models, with 

lower absolute relative errors for both median and average peak flows. In addition, we can see that VMM has a relatively small 

range of absolute relative error values for peak flows, which is similar to MIKE SHE. MIKE SHE has a moderate performance 

in terms of average and median peak flows. Although SBM performs as well as VMM in the Tuwei River catchment, it 

performs as poorly as XAJ in other catchments, with a large range and a large value of absolute relative error for peak flows. 5 

Table 3 and Table 4 show the average performance in terms of absolute relative error for flow volume 𝐸𝑣 and the average 

performance for lag time for the four models in each catchment, respectively. VMM has the minimum averages of 𝐸𝑣 and lag 

time, with values of 39.01% and 3.05 h, respectively (Table 3 and Table 4). In contrast, XAJ has the maximum averages of 𝐸𝑣 

and lag time, with values of 58.93% and 4.51 h, respectively. MIKE SHE and SBM have similar performances in terms of 

average 𝐸𝑣 and lag time. 10 

Overall, VMM has the best performance in event-based flood modeling in the four studied catchments in the middle 

Yellow River, and XAJ has the worst performance. MIKE SHE is slightly superior to SBM. Although MIKE SHE is a 

distributed hydrologic model with more complex structures and more explicit physical meaning than the conceptual model 

VMM, it does not necessarily achieve better results than conceptual models, which is consistent with other studies, because 

distributed models lack sufficiently high-resolution data (Beven, 2002, 2011; Michaud and Sorooshian, 1994; Seyfried and 15 

Wilcox, 1995). Both infiltration excess and saturation excess can be simulated in VMM, which may be why it performs better 

than the other two conceptual models (XAJ and SBM), which have single runoff generation mechanisms (saturation excess 

and infiltration excess, respectively). 

4.2 Sensitivity analysis of VMM 

The GSA method PAWN is applied to estimate the influence of parameter uncertainty on the model output results. Fig. 4 (a) 20 

and Fig. 4 (b) show the SA results of all study catchments for the objective Eq. (9) and Eq. (11), respectively. The most sensitive 

parameters – CS, IM and KE – are not affected by different objective functions. The rankings of other parameters are slightly 

influenced by different objective functions, such as CG expect for WM. WM ranks sixth when Eq. (11) is the objective function 

and 12th when Eq. (9) is the objective function. WM controls the tension water content in the soil, which determines the amount 

of rainfall stored in the soil and the generation of runoff. Therefore, it is reasonable to conclude that when the weight of the 25 

flow volume is added in Eq. (9), which can be expressed as Eq. (11), the ranking of WM increases, in this case to sixth place. 

4.3 Multicriterion assessment framework of VMM 

The multicriterion assessment framework we propose is applied to assess the ability of VMM to model flood peaks in four 

catchments. The framework requires that an accepted flood event must meet the requirements of C1 or C2, and C3 must be 

satisfied. Flood events conforming to conditions for C1, C2 or C3 can be obtained from Fig. 5. We find that the peak flows of 30 
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most flood events fall between the 15.85th percentile and the 81.45th percentile (68.3% confidence interval) estimated by HUP, 

which means that the VMM modeling results satisfy C3 fairly well. Under the premise of satisfying C3, the number of 

modeling events satisfying C2 is slightly more than that satisfying C1. Under the multicriterion assessment framework, 15 of 

the 20 (75.0%) flood events in the Qiushui River catchment, 12 of the 29 (41.4%) flood events in the Qingjian River catchment, 

15 of the 23 (65.2%) in the Tuwei River catchment, and 16 of the 28 (57.1%) in the Kuye River catchment can be accepted. In 5 

this case, the average acceptance rate for the four catchments is 58%, which is greater than the acceptance rate of 41% for C1.  

The multicriterion assessment framework can provide more reasonable information for decision makers. Taking the 13th 

flood event of the Kuye River catchment as an example, the observed and modeled peak flows are 1230 m3/s and 1510 m3/s, 

respectively. As shown in Fig. 5, the absolute relative error for peak flow is greater than 20%, and the peak flows do not fall 

in the 68.3% confidence interval, but they are in the same zone, i.e., the medium flow zone. For the Kuye River catchment, it 10 

is reasonable to believe that the peak flows 1230 m3/s and 1510 m3/s correspond to the same level according to the known 

flood peak data, which is the role played by C2. Although the dividing flow zone method of C2 is coarse, it is convenient and 

is beneficial for flood defense. 

5 Conclusion 

In this study, a multicriterion assessment framework of flood peaks is proposed with the VMM model in four catchments in 15 

the middle Yellow River. The main conclusions are as follows: 

(1) Compared with MIKE SHE, XAJ and SBM, VMM has better performance in terms of modeling event-based floods in 

semiarid catchments in the middle Yellow River. 

(2) In the four catchments, by PAWN analysis of VMM, CS, IM, and KE are the most sensitive parameters and are not affected 

by the choice of objective functions, whereas WM is the most sensitive parameter. 20 

(3) The multicriterion assessment framework can provide more reasonable information than single criteria (such as absolute 

relative error of peak flows) when engineers need to make decisions regarding semiarid catchments. 

The condition C2 will be affected by the number of known peak flows if data availability is limited. The framework is 

suitable for semiarid regions with poor modeling results and can enrich people’s decision making. 

Code availability 25 

We have shared the MATLAB code of VMM model at https://doi.org/10.4211/hs.c5232287d5c04bfb8cac5ce4e391ea0f. 
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Table 1. Characteristics of the four catchments 

Catchment 
Area 

(km2) 
Outlet station 

Area* 

(km2) 

Mean annual 

precipitation 

(mm) 

Mean 

evaporation 

(mm) 

Aridity 

index 

Qiushui River 1989 Linjiaping 1873 499 1150 2.31 

Qingjian River 4080 Yanchuan 3468 451 1080 2.4 

Tuwei River 3294 Gaojiachuan 2095 377 1050 2.78 

Kuye River 8706 Wenjiachuan 8645 410 1010 2.46 

* The area of a catchment controlled by the outlet station in the table. 
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Table 2. Calibrated parameters of VMM 

Symbol Meaning Range* 

KC Ratio of potential evapotranspiration to pan evaporation [0.5, 1.5] 

WM Mean areal maximum possible soil moisture, mm [50, 200] 

FC Stable infiltration capacity, mm/h [5, 100] 

K Infiltration index related to soil permeability, /h [0.05, 1] 

BF Index of the watershed infiltration capacity curve [0, 0.5] 

B Index of the watershed water storage capacity curve [1, 2] 

KI Outflow coefficient of interflow, d [0.1, 0.5] 

KG Outflow coefficient of groundwater, d [0.5, 2] 

CS Confluence coefficient of surface flow [0.05, 0.9] 

CI Recession coefficient of interflow, d [0.5, 0.95] 

CG Recession coefficient of groundflow, d [0.90, 0.99] 

KE Residence time of Muskingum, h [0.5, 5] 

XE Muskingum coefficient [0.01, 0.49] 

IM Impermeable area [0, 1] 

*In [a, b], a and b represent the lower and upper bounds of the parameters, respectively. 
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Table 3. The performance (in terms of absolute relative error) for peak flow 𝑬𝒗 in each catchment 

in the four models                                                        Unit: % 

  Qiushui River Qingjian River Tuwei River Kuye River Average* 

VMM 26.52  58.50  40.20  30.80  39.01  

MIKE SHE 40.50  60.70  45.30  38.20  46.18  

XAJ 56.60  66.61  60.20  52.30  58.93  

SBM 38.14  55.82  35.50  45.2 43.15  

*The average 𝐸𝑣 of the four catchments for each model  
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Table 4 The lag time of peak flow in the four catchments in the four models              Unit: h         

  Qiushui River Qingjian River Tuwei River Kuye River Average* 

VMM 2.20  3.02  3.46  3.50  3.05  

MIKE SHE 2.50  3.50  4.20  3.90  3.53  

XAJ 4.10  3.81  5.62  4.50  4.51  

SBM 4.00  2.95  3.46  4.20  3.65  

*The average lag time in the four catchments for each model 
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Figure 1: Location of Qingjian River catchment, Qiushui River catchment, Tuwei River catchment and Kuye 

River catchment. 
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Figure 2: Runoff generation module in VMM. (a) The infiltration capacity curve; (b) the tension water 

content storage capacity curve. 𝜶 is the fracture area that is saturated, and F represents the point 

infiltration capacity. 
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Figure 3: Boxplot of peak flows in the four catchments; Q1 and Q3 mean the first quantile and third quantile, respectively; interquartile range (𝐈𝐐𝐑) = 𝐐𝟑 − 𝐐𝟏; an outlier  

is defined as an extreme value that exceeds the IQR. 
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Figure 4: Sensitivity rankings of VMM parameters based on PAWN value P for different objective 

functions; (a) 𝑬𝒑𝒗 as the objective function; (b) 𝑬𝒑 as the objective function. The numbers on the ordinate 

represent the sensitivity ranking, where the larger the value, the greater the sensitivity. 
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Figure 5: Multicriterion assessments of event-based floods with VMM in the four catchments. Simulated peak flow* means the value of the modeled peak flow meets 

 the condition C1. 
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